Meeting Logistics and Facility & Safety Awareness

MEETING LOGISTICS

Thank you for attending tonight's board meeting.

EWEB management and subject matter experts are present in the room and virtually. The meeting is being live streamed and recorded.

Please note there is not an opportunity for public comment during work sessions.

FACILITY & SAFETY AWARENESS

Visitor access is limited to the board meeting room and restrooms.

Restrooms are located on the 1st floor; exit through the interior door at the back of the room and a Security Officer will direct you to the location.

In the event of an emergency, (such as a fire or security incident) follow all instructions given by staff.

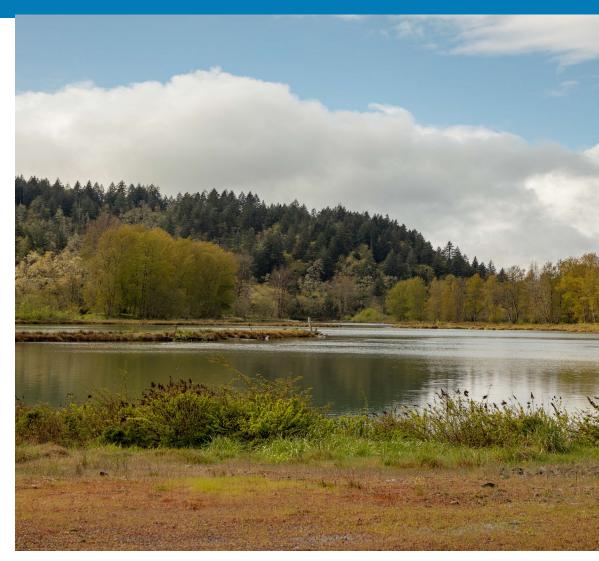
If evacuation is required, please calmly proceed to the nearest safe exit as identified and directed by staff and evacuate away from the building to the farthest points in the parking lots to allow clear and immediate access for first responders.

EWEB Board Work Session

October 21, 2025

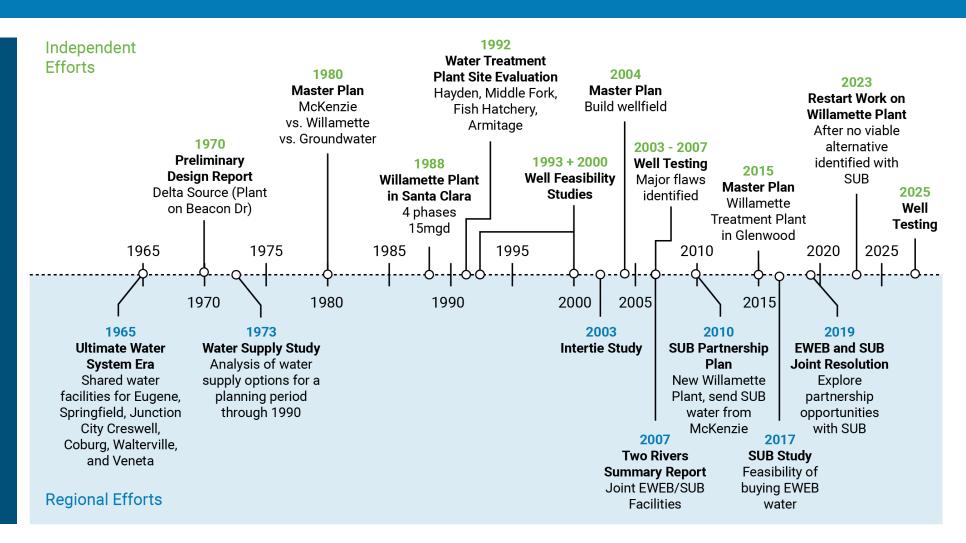
Please note that presentations may include unaudited information, as well as opinions and recommendations based on the best information available at the time. For more context on these topics, we encourage you to refer to the video recording for this meeting.

Willamette Treatment Plant Project - Update


October 21, 2025

Presentation outline

- 1. Project History and Objectives
- 2. Scope and Alternatives
- 3. Financial Considerations
- 4. Project Communications
- 5. Project Status and Next Steps
 - Board Decisions
 - Project Updates
- 6. Questions


1 - Project History and Objectives

Karen Kelley, Chief Operations Officer

Project history

Partial timeline of past efforts to develop a second source

Project objectives

- Provide a source that is immediately available in an emergency to maintain drinking water service.
- Develop a Second Source of water that supplements the system through daily operation.
- Provide the ability to strategically take
 Hayden Bridge offline for major maintenance
 during low demand periods.
- Protect EWEB's Willamette River Water Rights

Why it's important:

 A reliable second source of potable water is essential to protect public health and maintain economic stability in the community.

Runners fill up water bottles at an EWEB water station at the Eugene Marathon on April 27, 2025.

Outages that have happened elsewhere could happen here.

Natural Disaster

2018: City of Salem, OR issues a month-long water advisory due to cyanotoxin event in Detroit Lake.

Salem's main water source is the North Santiam River, which is fed from runoff from Mt. Jefferson in the Cascade Mountain Range. Detroit Lake is a hydropower reservoir on the North Santiam.

Like Salem, EWEB's water originates from the Cascade Range, and there are upriver reservoirs connected to the McKenzie that could experience prolonged water quality events.

Equipment Failure

2021: A storm causes a failure at the water treatment plant in Jackson, MS, that leaves the <u>city</u> <u>without usable water for a month</u>.

EWEB's sole water filtration plant, Hayden Bridge, is 75 years old. While EWEB has invested in proactive maintenance, <u>Hayden</u> Bridge is not immune to failures.

Accident

2014: A chemical spill in the Elk River near Charleston, WV, led to a five day "do not use" order.

Chemical spills are an omnipresent risk for surface water sources such as the McKenzie River. A severe spill could cut off Eugene's access to drinking water.

Near-Miss Incident. A truck crashed on the McKenzie on Sept. 15, 2025, stopping just short of the river and avoiding a major fuel and oil spill.

Characteristics of an ideal second source

- Not the McKenzie River
- Source water quality similar to McKenzie River
- Seismically resilient
- Adequate capacity
- Control of water supply, water quality and water delivery
- Property ownership
- Readily constructable
- Develops and Protects EWEB's Water Rights

Choosing a water source similar to the McKenzie enables EWEB to maintain the high-quality water service customers expect.

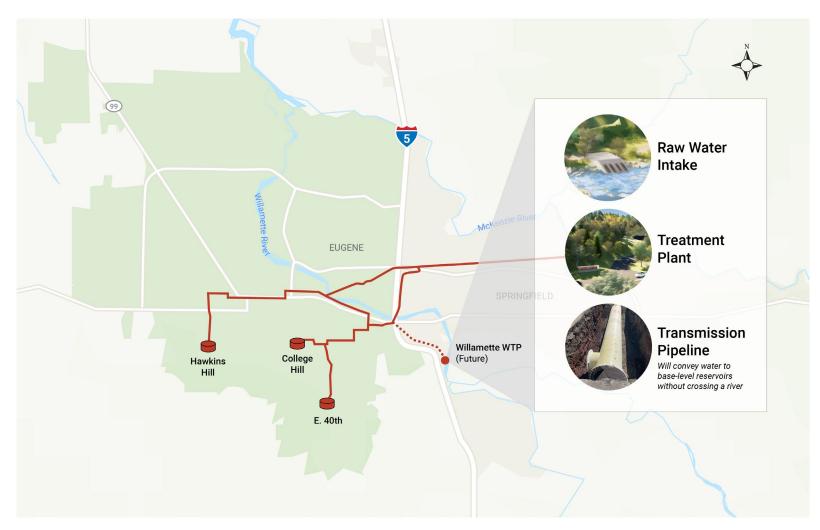
2 - Scope and Alternatives

Laura Farthing, P.E., Principal Engineer and Project Manager

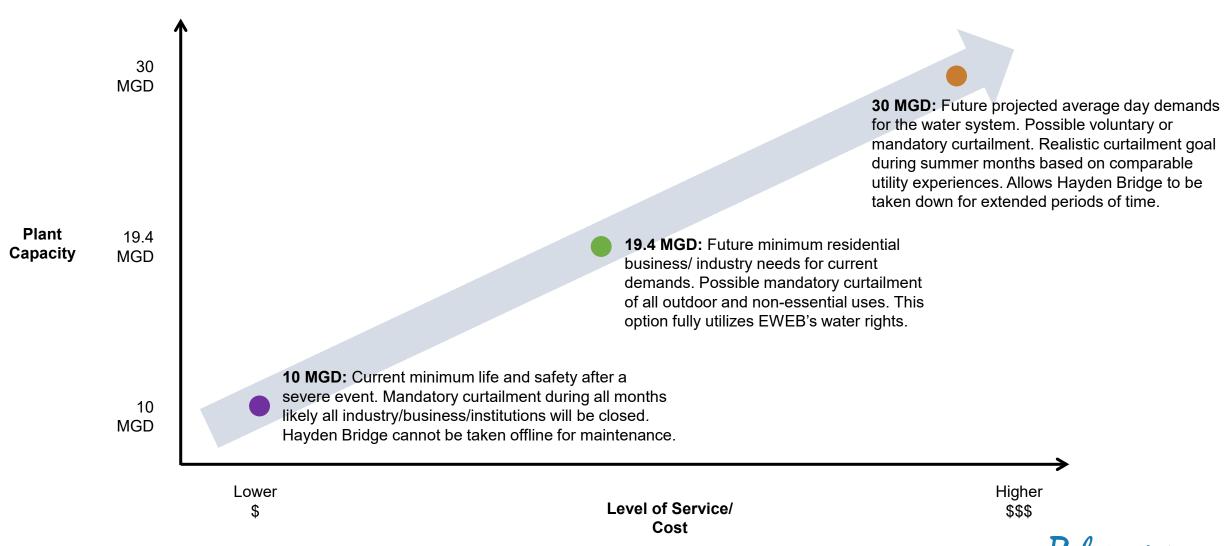
Overview of alternatives

X Fatal Flaw ○ Significant Risk ✓ Meets Resiliency Goals

Alternative	Cost	Redundant source to McKenzie	Similar to McKenzie River	Seismic Resiliency	Adequate Capacity	Robust treatment process	Control of Water Supply and Delivery	Property Ownership	Readily Constructa ble	Years to Construction	Protects EWEB's Water Rights
No Action	\$-\$\$	X	✓	X	X	✓	✓	✓	✓	0	X
Willamette River - Glenwood	\$\$\$	✓	✓	✓	✓	✓	✓	✓	✓	1	✓
Groundwater											
Groundwater - Everyday Use	\$\$\$-\$\$\$\$	✓	X	✓	x	✓	x	X	✓	10+	х
Groundwater - Emergency Only	\$\$\$-\$\$\$\$	✓	X	✓	X	✓	х	x	x	10+	х
Regional Solutions											
Interties	\$-\$\$	✓	✓	✓	X	0	x	✓	x	1	x
Joint Facilities	\$\$\$-\$\$\$\$	✓	0	✓	✓	✓	x	✓	x	10	0
McKenzie River				1	1	1				1	
Harden Hayden Bridge	\$\$\$	X	✓	0	x	✓	✓	✓	✓	5	х
Hatchery Intake and Plant	\$\$\$	X	✓	✓	✓	✓	✓	✓	x	10	X
Other											
Reclaimed Water	\$\$\$\$+	✓	X	✓	✓	✓	x	x	x	10+	× 1

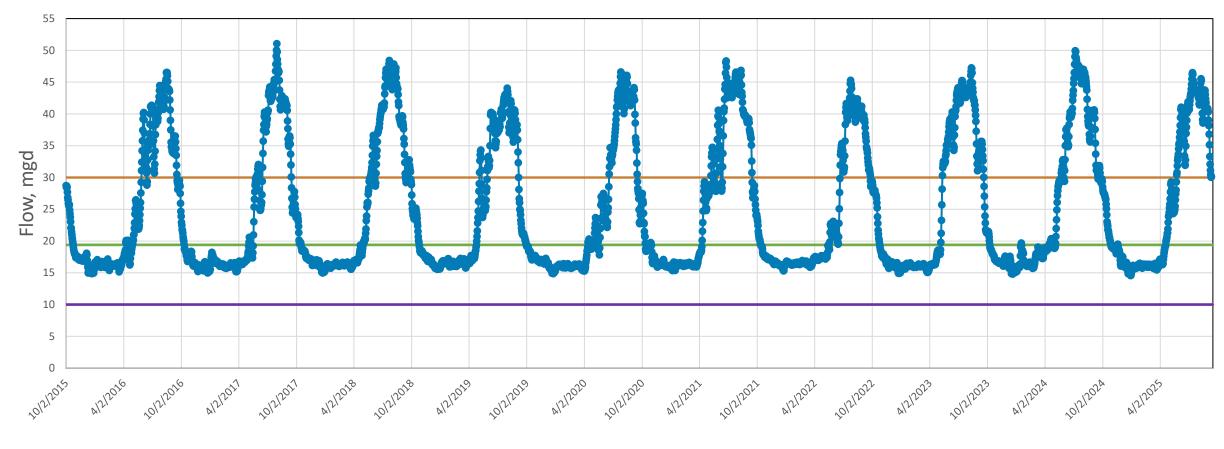

Water quality

	McKenzie River			Willamette River			
Parameter	Min	Max	Average	Min	Max	Average	
Mineral Content – Process	es/Reactions						
Alkalinity	15	38	25	16	28	23	
Calcium	3.5	7.6	4.2	4.3	6.8	5.5	
Magnesium	1.3	2.9	1.8	1.3	2.0	1.7	
Sodium	2.5	5.6	3.6	2.3	6.6	3.5	
Hardness	12	31	17	14	25	20	
Chloride	0.7	2.5	1.3	0.5	2.2	1.4	
Sulfate	0.51	2.6	0.87	0.6	8.0	2.0	
Organic Content – Taste a							
Total Organic Carbon	<0.5	1.8	0.70	1.1	2.9	1.6	


Scope of Willamette Treatment Plant

Three projects in one:

- New Intake sized for 30 mgd
- New Treatment Plant
- New Transmission Piping


Level of service goals

Relyonus.

Demands

Hayden Bridge Finished Water Flow

Date

____19.4 MGD

_____30 mgd

→ 5 day running average

_____10 mgd

Controlling project costs

- Manage the project and expectations.
- Develop a project plan that identifies the critical scope items and the items that are nice to have.
- Develop an updated baseline cost estimate (will build on the updated estimate staff completed).
- Measure all decisions against the baseline cost.
- Decisions that increase the overall cost of the project will be evaluated based on cost, rate of return and financial impacts to the utility.

Similar cost control methods were used throughout the construction of the new *E.* 40th water storage tanks.

3 – Financial Considerations

Karen Kelley, Chief Operations Officer

Water Long-Term Rate Trajectories

Metric	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	10-Year
Change in revenue requirement	6.0%	8.0%	7.5%	3.0%	2.5%	2.0%	2.0%	2.0%	2.0%	2.0%	43.5%
Second Source Increase	-	9.5%	-	-	15.0%	-	-	0.50%	0.50%	-	37.2%
Debt Service	3.53	2.01	2.27	2.30	2.00	2.10	2.13	2.00	2.02	2.06	n/a

Yellow = Within 10% of target

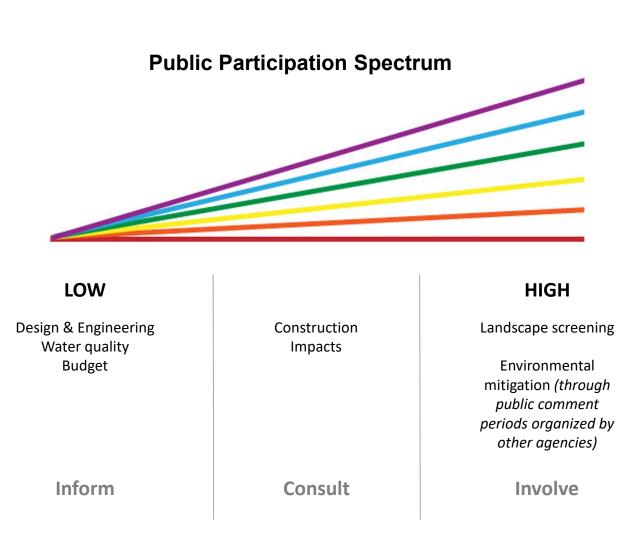
Second source represents an overall **10-year cumulative monthly increase for a single-family residence of approximately \$16 and** would bring the average monthly water bill to \$84 inclusive of other anticipated increases.

Many utilities will need to implement rate increases to address aged infrastructure, and in SUB's case, build a new plant. Even without projecting where our comparators will be in 10 years, our rates would still be lower than several communities in the Portland-Metro area after building a second source.

Cost of canceling or deferring the project

Project	Cost
Replacing Santa Clara	~\$80 million
Building Base Level Storage	~\$40-\$70 million
HB Finished Water Storage and Pumping Bypass*	~\$5-10 million
Knickerbocker Bridge**	~\$20 million
Total	~\$145-\$180 million

^{*} This allows the reservoir to be taken offline for inspection does not include any improvements to aging infrastructure


^{**} Project has been deferred and would need to be moved up in the plan without the Willamette Plant

4 - Project Communications

Claire Wray, Communications Specialist

Input opportunities

- Identify opportunities for input on participation spectrum:
 - ✓ Landscape screening for intake and treatment plant facilities
 - ✓ Environmental mitigation measures (though comment periods coordinated by other agencies)
 - ✓ Construction staging to minimize impacts to surrounding residents and businesses
- ✓ Provide multiple opportunities and channels for engagement

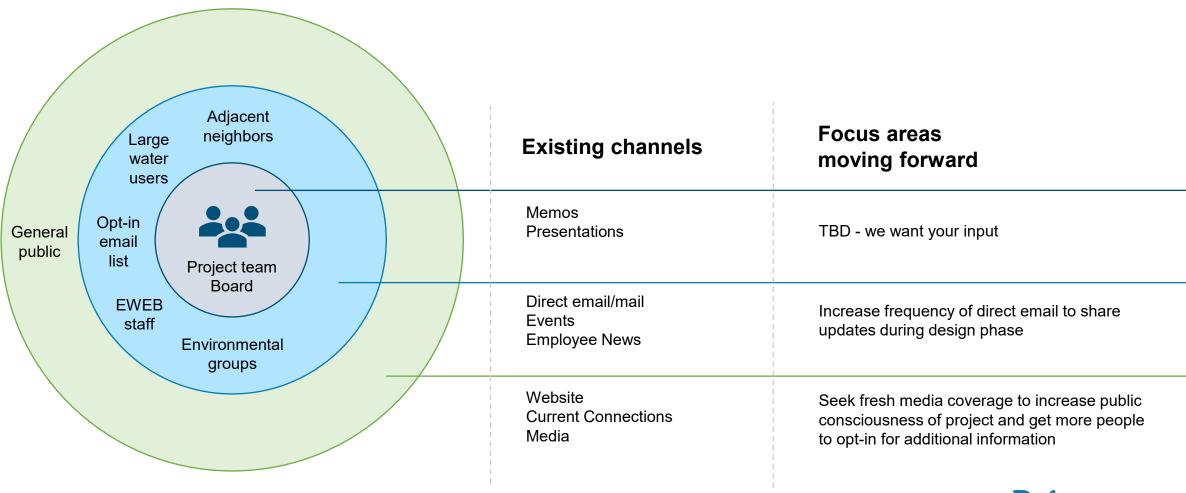
Activities completed to date

- January 2025: Held Industry Open House to share information about expected water quality and presented to the City Club.
- February 2025: Held Neighbor Open House to begin discussing construction impacts and ways to mitigate.
- March and May 2025: Notified environmental groups about opportunities to comment on mitigation measures in permit applications through USACE and Oregon DSL.
- April 2025: Met with interested neighbors to discuss landscape screening to minimize viewshed impacts. Presented to the Military Officers Association of America.
- May 2025: Presented to the CLF Network.

View of project site from waterfront properties on Harbor Drive. EWEB is committed to working with neighbors to minimize viewshed impacts.

Ongoing efforts

- Present at the Willamette Water Symposium in December.
- Gather letters of support from individuals, businesses and organizations passionate about securing a second source of water for the community.



Laura Farthing answering questions during the Industry Open House in February.

Future focus areas

Proximity to project

Relyonus.

5 - Project Status and Next Steps

Laura Farthing, Principal Engineer and Project Manager

Where we are and what's next

Work Completed		Work in Progress	Work Upcoming
Secured water rights Phase 1 Environmental Assessment Geotechnical Work 2016 PFSP Amendment Denied 2017 Blue Ribbon Panel Purchased property Preliminary Design Report Intake Preliminary Design 2022 Permitting Strategy Started Land Use Process	Transmission line preliminary design Intake Value Engineering Archeological Studies Complete 2025 Annexation Land Use Applications submitted Wetland Delineation Biological Assessment Temperature Modeling Restart public outreach Design contract awarded	 Environmental Permitting DSL Permit to be issued end of October Army Corps Permit on hold for DEQ review DEQ 401 Certification Permitting Preliminary Design Code and Plan Amendments Public Outreach 	 Complete Preliminary Design by Q2 2026 Complete Land Use process Continue public outreach Start construction in 2026 if project is approved at the preliminary design phase.

Board Input and Decisions

- How do you want to receive updates?
 - Monthly Memo
 - Email
 - Other
- Preliminary Design Review
- Go/No Go Decision Q2 2026

Questions?

Adjourn

