7' 11" X 13' X 8' 7" CONCRETE VAULT FOR PADMOUNT SWITCH
CONSTRUCTION NOTES:
1. Base for vault shall be 8” (minimum) compacted 3/4” minus crushed rock.
2. Flexible gasket sealant SHALL BE installed between vault sections to seal vault.
3. Conduits shall enter and exit vault in the positions indicated on the Construction Drawing, level and perpendicular to the vault and shall be grouted to provide a watertight seal with a smooth finish. Grout to be Redline “Speedcrete” or equivalent.
4. Conduits shall extend into the vault 11/2” +/- 1/2”, cut off square, chamfered, free of any sharp edges and temporarily sealed to prevent rocks or other materials from entering them after mandrelimg.
5. Vaults shall be clean and free of rocks, dirt and debris prior to final inspection.
6. Excavated area around vault shall be backfilled to final grade with 3/4” minus crushed rock.
7. Vault lid to be set 2” above the surrounding final grade.

DESIGN NOTES:
1. Vault is designed for H20 ” Traffic Rated” wheel loading, and the lid is designed for “Non Roadway” wheel loading. This vault is used for new switch vault installations, and in this application no vehicle traffic.
2. (2) 36” stanchions with (2) 14” conductor support bracket arms EC5-9.0503 are required per three phase primary pull to rack conductors.
3. (3) 36” stanchions with (3) 14” conductor supports bracket arms EC5-9.0503 are required per three phase feeder pull to rack conductors.
4. When using vault for an auto transfer switch (ATS) contact Distribution Engineer to modify dimensions of blockout in vault top to coordinate with ATS dimensions.
REFERENCE STANDARDS:
A) Refer to EC5-3.2000 for grounding detail.
B) Refer to EC5-5.0500, EC5-5.0800 and EC5-5.1400 for deadfront padmounted switch assemblies.
C) Refer to EC5-9.0500 for conductor support and secondary mole support brackets.
D) Refer to EC5-2.0100 for required minimum feeder, primary and secondary/service conductor make up length for vaults and secondary boxes.
E) Refer to GC5-2.3900 for entering and exiting concrete vaults/boxes conduit detail.
F) Refer to EC5-9.3500 for underground fault current indicator for feeder conductor.
G) Refer to EC5-9.3800 for underground fault current indicator for tap conductor.
H) Refer to EC5-0.7000 for underground fault current indicator application guideline for feeder conductor.
I) Refer to EC5-0.7500 for underground fault current indicator application guideline for tap conductor.
J) Refer to ED5-1.0100 for Electrical Equipment placement clearances at a street corner, maximum size & setback requirements.
K) Refer to ED5-1.0500 for Padmounted transformer placement clearances from structure.
L) Refer to ED5-1.0400 for Working Clearances around padmounted equipment.
M) Refer to EC5-A.0500 for Customer requirements for vegetation management for underground systems.
N) Refer to EC5-9.2600 for 3 1/2" x 7' screw type bollard post 8" helix, 6.625" x 6' galv steel bollard post, sleeve for removable bollard post.
O) Refer to ED5-1.0800 for bollard post placement requirements for padmounted equipment.
P) Refer to ED5-1.7000 for Underground Cable pulling program, Pull planning user guide.
Q) Refer to GC5-2.4600 for 7' 11" x 13' x 8' 7" concrete vault knockout entrance template detail, used for large transformers.
R) Refer to GC5-2.4800 for 7' 11" x 13' x 8' 7" concrete vault knockout entrance template detail, used for padmount switch.
S) Refer to Specification ES5-1100.26 for EWEB Stock code # 348-0000542.